sala A1-33, godz. 10:30–12:00
Dietmara Vogta (Bergische Universitaet Wuppertal)
Restriction spaces of A∞
Abstract. Let A∞ be the space of 2π periodic C∞-functions on R with vanishing negative Fourier coefficients or, equivalently, the space of holomorphic functions on the unit disc with C∞-boundary values. It is shown that for certain totally disconnected Carleson sets E the restriction space A∞(E):=A∞|E has a basis, so disproving a claim of S. R. Patel. Among the examples there are the classical Cantor set and sets like {2−n:n=1,2,…}∪{0}. To prove our result we show, using a result of Alexander, Taylor and Williams, that in our cases we have A∞(E)=C∞(E) where C∞(E):=C∞(R)|E. Then we analyze carefully the structure of the restriction spaces C∞(E) making use of analytical tools and of the structure theory of nuclear Fréchet spaces.
Abstract in pdf file
Odczyt w ramach wspólnego seminarium z Zakładem Analizy Funkcjonalnej UAM. Przed wykładem o godz. 10.00 w klubie profesorskim odbędzie się spotkanie przy kawie i herbacie.