Taylor coefficient multipliers and interpolation of holomorphic functions

MICHAEL LANGENBRUCH

Institute of Mathematics University of Oldenburg 26111 Oldenburg, Germany E-Mail: Michael.Langenbruch@uni-oldenburg.de

Abstract: This is a report on joint work with P. Domański. I will consider Taylor coefficient multipliers on $\mathcal{A}(\mathbb{R}^d)$, that is, continuous linear operators on $\mathcal{A}(\mathbb{R}^d)$ such that all monomials are eigenfunctions. The corresponding sequence $(m_{\alpha})_{\alpha \in \mathbb{N}^d}$ of eigenvalues is called multiplier sequence. Typical examples of multipliers are Hadamard partial differential operators defined by $H(\theta) := \sum_{|\alpha| \leq m} c_{\alpha} \theta^{\alpha}$, where $\theta^{\alpha} := \prod_{j \leq d} \theta_j^{\alpha_j}$ for $\theta_j := x_j \partial/\partial x_j$. I will discuss a characterization of multiplier sequences as interpolating sequence for certain holomorphic functions f, i.e. f satisfies $f(\alpha) = m_{\alpha}$ for any $\alpha \in \mathbb{N}^d$. This will be used to prove necessary and also sufficient conditions for the surjectivity of multipliers. The evaluation of these conditions is interesting already for Hadamard operators of order 2 in 2 variables.