Restriction spaces of A^{∞}

Dietmar Vogt Bergische Universität Wuppertal

Abstract

Let A^{∞} be the space of 2π -periodic C^{∞} -functions on \mathbb{R} with vanishing negative Fourier coefficients or, equivalently, the space of holomorphic functions on the unit disc with C^{∞} -boundary values. It is shown that for certain totally disconnected Carleson sets E the restriction space $A_{\infty}(E) := A^{\infty}|_E$ has a basis, so disproving a claim of S. R. Patel. Among the examples there are the classical Cantor set and sets like $\{2^{-n} : n = 1, 2, ...\} \cup \{0\}$. To prove our result we show, using a result of Alexander, Taylor and Williams, that in our cases we have $A_{\infty}(E) = C_{\infty}(E)$ where $C_{\infty}(E) := C^{\infty}(\mathbb{R})|_E$. Then we analyze carefully the structure of the restriction spaces $C_{\infty}(E)$ making use of analytical tools and of the structure theory of nuclear Fréchet spaces.